Abstract
Identifying causal mutations accelerates genetic disease diagnosis, and therapeutic development. Missense variants present a bottleneck in genetic diagnoses as their effects are less straightforward than truncations or nonsense mutations. While computational prediction methods are increasingly successful at prediction for variants in known disease genes, they do not generalize well to other genes as the scores are not calibrated across the proteome. To address this, we developed a deep generative model, popEVE, that combines evolutionary information with population sequence data and achieves state-of-the-art performance at ranking variants by severity to distinguish patients with severe developmental disorders from potentially healthy individuals. popEVE identifies 442 genes in a cohort of developmental disorder cases, including evidence of 119 novel genetic disorders without the need for gene-level enrichment and without overestimating the prevalence of pathogenic variants in the population. By placing variants on a unified scale, our model offers a comprehensive perspective on the distribution of fitness effects across the entire proteome and the broader human population. popEVE provides compelling evidence for genetic diagnoses even in exceptionally rare single-patient disorders where conventional techniques relying on repeated observations may not be applicable. Interactive web viewer and downloads available at pop.evemodel.org.
Competing Interest Statement
The authors have declared no competing interest.
Funding Statement
R.O, A.K, C.S, M.F, J.F, and D.S.M. are supported by a Chan Zuckerberg Initiative Award (Neurodegeneration Challenge Network, CZI2018-191853). H.S., and D.S.M. are supported by an NIH Transformational Research Award (TR01 1R01CA260415). C.S. is supported by the National Science Foundation Graduate Research Fellowship. M.D and J.F. are supported by the Spanish Ministry of Science and Innovation (PID2022-140793NA-I00).
Author Declarations
I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.
Yes
The details of the IRB/oversight body that provided approval or exemption for the research described are given below:
IRB of Harvard Medical School waived ethical approval for this work
I confirm that all necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived, and that any patient/participant/sample identifiers included were not known to anyone (e.g., hospital staff, patients or participants themselves) outside the research group so cannot be used to identify individuals.
Yes
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Yes
I have followed all appropriate research reporting guidelines, such as any relevant EQUATOR Network research reporting checklist(s) and other pertinent material, if applicable.
Yes
Data Availability
All data produced is available online at pop.evemodel.org or is contained in the supplementary material in the manuscript.